Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
iScience ; 26(7): 107019, 2023 Jul 21.
Article in English | MEDLINE | ID: covidwho-20244514

ABSTRACT

Equitable SARS-CoV-2 surveillance in low-resource communities lacking centralized sewers is critical as wastewater-based epidemiology (WBE) progresses. However, large-scale studies on SARS-CoV-2 detection in wastewater from low-and middle-income countries is limited because of economic and technical reasons. In this study, wastewater samples were collected twice a month from 186 urban and rural subdistricts in nine provinces of Thailand mostly having decentralized and non-sewered sanitation infrastructure and analyzed for SARS-CoV-2 RNA variants using allele-specific RT-qPCR. Wastewater SARS-CoV-2 RNA concentration was used to estimate the real-time incidence and time-varying effective reproduction number (Re). Results showed an increase in SARS-CoV-2 RNA concentrations in wastewater from urban and rural areas 14-20 days earlier than infected individuals were officially reported. It also showed that community/food markets were "hot spots" for infected people. This approach offers an opportunity for early detection of transmission surges, allowing preparedness and potentially mitigating significant outbreaks at both spatial and temporal scales.

2.
PLoS One ; 18(5): e0286259, 2023.
Article in English | MEDLINE | ID: covidwho-20236627

ABSTRACT

BACKGROUND: Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. METHODS: A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. RESULTS: We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. CONCLUSIONS: Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Wastewater , Public Health , Pandemics , Wastewater-Based Epidemiological Monitoring , England/epidemiology , RNA, Viral
3.
The Lancet regional health Southeast Asia ; 2023.
Article in English | EuropePMC | ID: covidwho-2319575

ABSTRACT

Background The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n=112) and rural (n=28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2;and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time Funding UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.

4.
Heliyon ; 8(9): e10547, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2158902

ABSTRACT

Viral pathogens including SARS-CoV-2 RNA have been detected in wastewater treatment effluent, and untreated sewage overflows, that pose an exposure hazard to humans. We assessed whether SARS-CoV-2 RNA was likely to have been present in detectable quantities in UK rivers and estuaries during the first wave of the Covid-19 pandemic. We simulated realistic viral concentrations parameterised on the Camel and Conwy catchments (UK) and their populations, showing detectable SARS-CoV-2 RNA concentrations for untreated but not for treated loading, but also being contingent on viral decay, hydrology, catchment type/shape, and location. Under mean or low river flow conditions, viral RNA concentrated within the estuaries allowing for viral build-up and caused a lag by up to several weeks between the peak in community infections and the viral peak in the environment. There was an increased hazard posed by SARS-CoV-2 RNA with a T 90 decay rate >24 h, as the estuarine build-up effect increased. High discharge events transported the viral RNA downstream and offshore, increasing the exposure risk to coastal bathing waters and shellfisheries - although dilution in this case reduced viral concentrations well below detectable levels. Our results highlight the sensitivity of exposure to viral pathogens downstream of wastewater treatment, across a range of viral loadings and catchment characteristics - with implications to environmental surveillance.

5.
Water ; 14(21):3568, 2022.
Article in English | MDPI | ID: covidwho-2099918

ABSTRACT

During the COVID-19 pandemic, wastewater-based epidemiology (WBE) has proven to be an effective tool for monitoring the prevalence of SARS-CoV-2 in urban communities. However, low-cost, simple, and reliable wastewater sampling techniques are still needed to promote the widespread adoption of WBE in many countries. Since their first use for public health surveillance in the 1950s, many types of passive samplers have been proposed, however, there have been few systematic studies comparing their ability to co-capture enveloped viruses and bacteria. Here, we evaluated the laboratory and field performance of 8 passive sampler materials (NanoCeram, ZetaPlus, nylon and ion exchange membranes, cellulose acetate filters, glass wool, cotton-based Moore swabs and tampons) to capture viruses and bacteria from wastewater. Viral capture focused on SARS-CoV-2, the bacteriophage Phi6 and the faecal marker virus, crAssphage. We showed that the best performing passive sampler in terms of cost, ease of deployment and viral capture were the electronegative cotton-based swabs and tampons. We speculate that viral capture is a combination of trapping of particulate matter to which viruses are attached, as well as electrostatic attraction of viral particles from solution. When deployed at wastewater treatment plants, the passive samplers worked best up to 6 h, after which they became saturated or exhibited a loss of virus, probably due to night-time wash-out. The patterns of viral capture across the different sampling materials were similar providing evidence that they can be used to monitor multiple public health targets. The types of bacteria trapped by the passive samplers were material-specific, but possessed a different 16S rRNA gene profile to the wastewater, suggesting preferential retention of specific bacteria. We conclude that the choice of passive sampler and deployment time greatly influences the pattern and amount of viral and bacterial capture.

6.
PLoS One ; 17(6): e0270168, 2022.
Article in English | MEDLINE | ID: covidwho-1963013

ABSTRACT

Clinical testing of children in schools is challenging, with economic implications limiting its frequent use as a monitoring tool of the risks assumed by children and staff during the COVID-19 pandemic. Here, a wastewater-based epidemiology approach has been used to monitor 16 schools (10 primary, 5 secondary and 1 post-16 and further education) in England. A total of 296 samples over 9 weeks have been analysed for N1 and E genes using qPCR methods. Of the samples returned, 47.3% were positive for one or both genes with a detection frequency in line with the respective local community. WBE offers a low cost, non-invasive approach for supplementing clinical testing and can provide longitudinal insights that are impractical with traditional clinical testing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Child , Humans , Pandemics , SARS-CoV-2/genetics , Schools , Wastewater
7.
Nat Commun ; 13(1): 4313, 2022 07 25.
Article in English | MEDLINE | ID: covidwho-1960368

ABSTRACT

Accurate surveillance of the COVID-19 pandemic can be weakened by under-reporting of cases, particularly due to asymptomatic or pre-symptomatic infections, resulting in bias. Quantification of SARS-CoV-2 RNA in wastewater can be used to infer infection prevalence, but uncertainty in sensitivity and considerable variability has meant that accurate measurement remains elusive. Here, we use data from 45 sewage sites in England, covering 31% of the population, and estimate SARS-CoV-2 prevalence to within 1.1% of estimates from representative prevalence surveys (with 95% confidence). Using machine learning and phenomenological models, we show that differences between sampled sites, particularly the wastewater flow rate, influence prevalence estimation and require careful interpretation. We find that SARS-CoV-2 signals in wastewater appear 4-5 days earlier in comparison to clinical testing data but are coincident with prevalence surveys suggesting that wastewater surveillance can be a leading indicator for symptomatic viral infections. Surveillance for viruses in wastewater complements and strengthens clinical surveillance, with significant implications for public health.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , Prevalence , RNA, Viral/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring
8.
PLoS Biology ; 18(4), 2020.
Article in English | ProQuest Central | ID: covidwho-1876907

ABSTRACT

Have you ever sought to use metagenomic DNA sequences reported in scientific publications? Were you successful? Here, we reveal that metagenomes from no fewer than 20% of the papers found in our literature search, published between 2016 and 2019, were not deposited in a repository or were simply inaccessible. The proportion of inaccessible data within the literature has been increasing year-on-year. Noncompliance with Open Data is best predicted by the scientific discipline of the journal. The number of citations, journal type (e.g., Open Access or subscription journals), and publisher are not good predictors of data accessibility. However, many publications in high–impact factor journals do display a higher likelihood of accessible metagenomic data sets. Twenty-first century science demands compliance with the ethical standard of data sharing of metagenomes and DNA sequence data more broadly. Data accessibility must become one of the routine and mandatory components of manuscript submissions—a requirement that should be applicable across the increasing number of disciplines using metagenomics. Compliance must be ensured and reinforced by funders, publishers, editors, reviewers, and, ultimately, the authors.

9.
American Journal of Public Health ; 112(4):553-557, 2022.
Article in English | ProQuest Central | ID: covidwho-1777257

ABSTRACT

[...]mitigating the threat posed by AMR requires a recognition of how embedded social structures and incentives drive antimicrobial use across sectors. [...]escalating commitments through national AMR action plans, which outline each country's AMR goals and planned actions, will likely increase the effectiveness of global AMR efforts. Fifth, like the Intergovernmental Panel on Climate Change guiding the Paris Agreement, ongoing AMR action would be best informed by a regular and independent stock-taking to evaluate existing measures and advise on evidence-informed adjustments.11,12 This endeavor must (1) recognize that different ways of knowing constitute the global knowledge base, (2) ensure that using evidence to inform adjustments that work does not detract from the inherently political questions of works for what purpose and for whose benefit, and (3) come with a commitment to equitable evidence generation and prioritization. Striking a panel to assess the global knowledge base on these terms will ensure that global, regional, and national goals and policies are continually informed by the best available evidence and are in line with leading practices.12 Finally, an enduring international legal agreement could institutionalize requires new legal mechanisms beyond those available through the World Health Organization, the Food and Agriculture Organization of the United Nations, the World Organization for Animal Health, and the United Nations Environment Program, which are limited to the area-specific mandates of each institution.

11.
Sci Total Environ ; 808: 151916, 2022 Feb 20.
Article in English | MEDLINE | ID: covidwho-1531802

ABSTRACT

Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0-400 NTU), surfactant load (0-200 mg/l), and storage temperature (5-20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and <10% with IP in turbid samples, whilst viral recoveries for samples with additional surfactant were between 0-18% for AS and 0-5% for IP. Turbidity and sample storage temperature combined had no significant effect on SARS-CoV-2 recovery (p > 0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples.


Subject(s)
COVID-19 , Wastewater , Humans , SARS-CoV-2 , Surface-Active Agents , Temperature
12.
Environ Sci Technol ; 55(22): 15276-15286, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1503942

ABSTRACT

Wastewater based epidemiology (WBE) has become an important tool during the COVID-19 pandemic, however the relationship between SARS-CoV-2 RNA in wastewater treatment plant influent (WWTP) and cases in the community is not well-defined. We report here the development of a national WBE program across 28 WWTPs serving 50% of the population of Scotland, including large conurbations, as well as low-density rural and remote island communities. For each WWTP catchment area, we quantified spatial and temporal relationships between SARS-CoV-2 RNA in wastewater and COVID-19 cases. Daily WWTP SARS-CoV-2 influent viral RNA load, calculated using daily influent flow rates, had the strongest correlation (ρ > 0.9) with COVID-19 cases within a catchment. As the incidence of COVID-19 cases within a community increased, a linear relationship emerged between cases and influent viral RNA load. There were significant differences between WWTPs in their capacity to predict case numbers based on influent viral RNA load, with the limit of detection ranging from 25 cases for larger plants to a single case in smaller plants. SARS-CoV-2 viral RNA load can be used to predict the number of cases detected in the WWTP catchment area, with a clear statistically significant relationship observed above site-specific case thresholds.


Subject(s)
COVID-19 , Water Purification , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Viral Load , Wastewater
13.
J Hazard Mater ; 424(Pt B): 127456, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1458852

ABSTRACT

The COVID-19 pandemic has put unprecedented pressure on public health resources around the world. From adversity, opportunities have arisen to measure the state and dynamics of human disease at a scale not seen before. In the United Kingdom, the evidence that wastewater could be used to monitor the SARS-CoV-2 virus prompted the development of National wastewater surveillance programmes. The scale and pace of this work has proven to be unique in monitoring of virus dynamics at a national level, demonstrating the importance of wastewater-based epidemiology (WBE) for public health protection. Beyond COVID-19, it can provide additional value for monitoring and informing on a range of biological and chemical markers of human health. A discussion of measurement uncertainty associated with surveillance of wastewater, focusing on lessons-learned from the UK programmes monitoring COVID-19 is presented, showing that sources of uncertainty impacting measurement quality and interpretation of data for public health decision-making, are varied and complex. While some factors remain poorly understood, we present approaches taken by the UK programmes to manage and mitigate the more tractable sources of uncertainty. This work provides a platform to integrate uncertainty management into WBE activities as part of global One Health initiatives beyond the pandemic.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , SARS-CoV-2 , Uncertainty , Wastewater , Wastewater-Based Epidemiological Monitoring
14.
Wellcome Open Res ; 6: 146, 2021.
Article in English | MEDLINE | ID: covidwho-1296224

ABSTRACT

There is an increasingly urgent need for new antibiotics, yet there is a significant and persistent economic problem when it comes to developing such medicines. The problem stems from the perceived need for a "market" to drive commercial antibiotic development. In this article, we explore abandoning the market as a prerequisite for successful antibiotic research and development. Once one stops trying to fix a market model that has stopped functioning, one is free to carry out research and development (R&D) in ways that are more openly collaborative, a mechanism that has been demonstrably effective for the R&D underpinning the response to the COVID pandemic. New "open source" research models have great potential for the development of medicines for areas of public health where the traditional profit-driven model struggles to deliver. New financial initiatives, including major push/pull incentives, aimed at fixing the broken antibiotics market provide one possible means for funding an openly collaborative approach to drug development. We argue that now is therefore the time to evaluate, at scale, whether such methods can deliver new medicines through to patients, in a timely manner.

16.
PLoS One ; 15(12): e0244963, 2020.
Article in English | MEDLINE | ID: covidwho-999852

ABSTRACT

The COVID-19 pandemic disrupted the world in 2020 by spreading at unprecedented rates and causing tens of thousands of fatalities within a few months. The number of deaths dramatically increased in regions where the number of patients in need of hospital care exceeded the availability of care. Many COVID-19 patients experience Acute Respiratory Distress Syndrome (ARDS), a condition that can be treated with mechanical ventilation. In response to the need for mechanical ventilators, designed and tested an emergency ventilator (EV) that can control a patient's peak inspiratory pressure (PIP) and breathing rate, while keeping a positive end expiratory pressure (PEEP). This article describes the rapid design, prototyping, and testing of the EV. The development process was enabled by rapid design iterations using additive manufacturing (AM). In the initial design phase, iterations between design, AM, and testing enabled a working prototype within one week. The designs of the 16 different components of the ventilator were locked by additively manufacturing and testing a total of 283 parts having parametrically varied dimensions. In the second stage, AM was used to produce 75 functional prototypes to support engineering evaluation and animal testing. The devices were tested over more than two million cycles. We also developed an electronic monitoring system and with automatic alarm to provide for safe operation, along with training materials and user guides. The final designs are available online under a free license. The designs have been transferred to more than 70 organizations in 15 countries. This project demonstrates the potential for ultra-fast product design, engineering, and testing of medical devices needed for COVID-19 emergency response.


Subject(s)
COVID-19/therapy , Equipment Design/methods , Respiration, Artificial/instrumentation , Ventilators, Mechanical/adverse effects , Animals , COVID-19/pathology , Humans , Respiration, Artificial/methods , Respiratory Mechanics/physiology , Respiratory Rate/physiology , SARS-CoV-2 , Swine
17.
Water Res ; 186: 116404, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-779749

ABSTRACT

The presence of SARS-CoV-2 in the feces of infected patients and wastewater has drawn attention, not only to the possibility of fecal-oral transmission but also to the use of wastewater as an epidemiological tool. The COVID-19 pandemic has highlighted problems in evaluating the epidemiological scope of the disease using classical surveillance approaches, due to a lack of diagnostic capacity, and their application to only a small proportion of the population. As in previous pandemics, statistics, particularly the proportion of the population infected, are believed to be widely underestimated. Furthermore, analysis of only clinical samples cannot predict outbreaks in a timely manner or easily capture asymptomatic carriers. Threfore, community-scale surveillance, including wastewater-based epidemiology, can bridge the broader community and the clinic, becoming a valuable indirect epidemiological prediction tool for SARS-CoV-2 and other pandemic viruses. This article summarizes current knowledge and discusses the critical factors for implementing wastewater-based epidemiology of COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Humans , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring
18.
IEEE Trans Biomed Circuits Syst ; 14(5): 1088-1096, 2020 10.
Article in English | MEDLINE | ID: covidwho-737835

ABSTRACT

In response to anticipated shortages of ventilators caused by the COVID-19 pandemic, many organizations have designed low-cost emergency ventilators. Many of these devices are pressure-cycled pneumatic ventilators, which are easy to produce but often do not include the sensing or alarm features found on commercial ventilators. This work reports a low-cost, easy-to-produce electronic sensor and alarm system for pressure-cycled ventilators that estimates clinically useful metrics such as pressure and respiratory rate and sounds an alarm when the ventilator malfunctions. A low-complexity signal processing algorithm uses a pair of nonlinear recursive envelope trackers to monitor the signal from an electronic pressure sensor connected to the patient airway. The algorithm, inspired by those used in hearing aids, requires little memory and performs only a few calculations on each sample so that it can run on nearly any microcontroller.


Subject(s)
Clinical Alarms , Coronavirus Infections/therapy , Monitoring, Physiologic/instrumentation , Pneumonia, Viral/therapy , Respiration, Artificial/instrumentation , Signal Processing, Computer-Assisted , Ventilators, Mechanical , Algorithms , COVID-19 , Electronics , Equipment Design , Humans , Pandemics , Respiration , Software
SELECTION OF CITATIONS
SEARCH DETAIL